Résoudre des mystery caches (5 – mathématiques)

Forum France Géocaching

France Geocaching

Les foufous de géocaching, vous êtes fidèles au poste ? Alors on attaque la 5ème partie des tutoriels d’ePeterso2 qui, après les quizz et les jeux de mots, nous emmène dans l’univers diabolique des mathématiques…

Introduction

Counting sheep when you’re trying to sleep,
Being fair when there’s something to share,
Being neat when you’re folding a sheet –
That’s mathematics!
Tom Lehrer, "That’s Mathematics"

Si vous avez trouvé une cache, vous avez utilisé les mathématiques. Il y a une quantité non négligeable de trigonométrie et d’autres choses qui vous permet de taper les coordonnées d’une cache dans votre GPS afin de suivre la petite flèche de la boussole jusqu’au container.

Dans vos parcours de géocaching, vous avez peut-être rencontré une cache offset – qui exige d’aller à un certain emplacement, trouver ou déduire un certain groupe de chiffres et d’additionner ces chiffres à vos coordonnées actuelles pour trouver les coordonnées finales. C’est un des types les plus communs de calculs mathématiques dans les mystery et multi-caches.

Le but de ce tutoriel n’est pas de vous bourrer le crane avec la totalité des connaissances mathématiques en quelques lignes, mais simplement d’exposer quelques sujets variés de maths que vous rencontrerez occasionnellement dans les puzzle caches, avec quelques références pour les comprendre. Comme toujours, Google est la clé pour trouver plus d’information sur tous ces sujets.

Sujets de mathématiques

Constantes

Une constante est un nombre avec une valeur spécifique, souvent identifiée par une simple lettre pour facilement la référencer. Les nombres comme i (racine carrée de -1), e (la base du logarithme népérien) et pi (le rapport entre la circonférence d’un cercle et son diamètre) sont certains des plus connus. La totalité d’entre eux apparaissent de façon inattendue dans l’étude des mathématiques, et notamment dans la fameuse équation découverte par le grand mathématicien Euler :

epi*i + 1 = 0

Propriétés intéressantes des nombres

Un nombre premier n’a pas de diviseur autre que 1 et lui-même. Autrement dit, vous ne pouvez diviser un nombre premier par aucun nombre avec un résultat entier (sans décimales). Les nombres 2, 3, 5 et 7 sont premiers alors que 4, 6, 8 (divisible par 2 et 4), 9 (divisible par 3) et 10 (divisible par 2 et 5) ne le sont pas. Un nombre qui n’est pas premier est appelé nombre composé.

Un nombre parfait est un nombre dont la somme de ses diviseurs égale le nombre lui-même (en comptant le 1 et sans compter le nombre lui-même) Par exemple, les diviseurs de 6 sont 1, 2 et 3 et leur somme fait 6.

Les nombres peuvent être heureux, étranges , extravagants , frugaux , sublimes , amicaux et bien plus encore !!!

Bases alternatives

Notre système numéral est appelé "base 10" parce qu’il possède 10 chiffres différents, de 0 à 9 (OK, je simplifie énormément, mes excuses à tous les cadors de mathématiques lisant cela !). Le nombre écrit "10" en base dix signifie que sa valeur est d’une 1 dizaine et 0 unité. Le nombre 342 correspond à 3 centaines plus 4 dizaines plus 2 unités.

Et si nous avions seulement 8 chiffres au lieu de 10 dans notre système de numérotation ? A la place des dizaines, on aurait des huitaines. Et à la place de centaines, on aurait des "soixantrequatraines". Et donc l’écriture 342 en base 10 représente 342, mais l’écriture 342 en base 8 représente (en base 10) 3*64 + 4*8 + 2, soit 226 en base 10.

Les ordinateurs fonctionnent en base 2 (binaire – exemple 11100100), on trouve également souvent des nombres informatiques représentés en base 8 (octal) ou base 16 (hexadécimal, avec les lettres de A à F pour représenter les valeurs de 10 à 15 – exemple A6F2)

Une énigme sur al-Khwarizmi (d’où provient le mot "algorithme !")

Topologie

Les topologistes ne peuvent donner la différence entre les donuts et les mugs de café – ils considèrent les deux comme équivalents,  et c’est pourquoi vous ne les voyez jamais à Dunkin Donuts (Note du Tof : une chaîne où l’on mange du café et des donuts !), ou si vous les y voyez, pourquoi ils ont du café sur leur pantalon.

La topologie est l’étude des formes… les topologistes jouent avec les nœuds, les rubans torsadés , les trous et autres… deux formes sont équivalentes si vous pouvez étirer, tordre, mouler, plier (mais pas déchirer ou perforer) une forme pour arriver à l’autre forme. Ce qui explique pourquoi la forme du donut et équivalente à celle de la tasse de café – les 2 ont exactement un trou (la tasse de café a une indentation mais cela ne compte pas comme un trou) !

Suites

Une suite est une liste ordonnée d’items, cette liste pouvant avoir un nombre fixe d’items ou être infinie.

Une suite arithmétique est additionnelle : si la suite commence par un nombre particulier, vous trouverez le prochain nombre dans la suite en l’additionnant à un nombre fixe. Par exemple, la suite 1,2,3… est une suite artihmétique, de même que 2,5,8,11,14,…

Une suite géométrique est semblable à la suite arithmétique, sauf qu’il faut multiplier au lieu d’additionner. Voici une suite où chaque item est multiplié par 2 pour obtenir le suivant : 1,2,4,8,16,32… on peut aussi multiplier par des nombres plus petits que 1 ou même des nombres négatifs.

Une suite de Fibonacci commence avec 2 nombres (comme 0 et 1), puis il faut additionner les 2 pour obtenir le nombre suivant. Puis on repète avec les 2 derniers nombres de la suite pour avoir le suivant. Par exemple 0,1,0+1=1, 1+1=2, 1+2=3, 2+3=5, 3+5=8. Si vous avez lu ou vu le Da Vinci Code, vous connaissez déjà cette suite !

Histoire

L’histoire des mathématiques regorge de récits fascinants sur l’origine des mathématiques dans les cultures anciennes et sur les mathématiciens célèbres (Newton, Euler, Gauss, Erdos et d’autres).

Ressources

Chercher sur Google les termes "jeux mathématiques" ou "puzzle mathématique" vous donnera une grande variété de sites avec des exemples de problèmes (et les solutions), des thèmes supplémentaires, des énigmes classiques, etc.

Wikipedia a également un excellent  portail mathématique  et des pages thématiques sur les jeux mathématiques.
Bien sûr, aucune discussion sur les maths ne serait complète sans quelques liens de blagues mathématiques !

Merci à l’auteur, vous voila prévenu si vous croisez certains de ces sujets lors de vos prochaines résolutions d’énigmes… et vous pouvez désormais attaquer la mystery mathématique d’EPeterso2, à base d’égyptien !

Voir aussi Mystery caches : stratégies, Mystery : tactiques.

About these ads

Tags:,

À propos de Tof La Beuze

Géocaching !

7 réponses à “Résoudre des mystery caches (5 – mathématiques)”

  1. Papou27 dit :

    A la place des dizaines, on aurait des huitaines. Et à la place de centaines, on aurait des « soixantrequatraines.
    Moi j’aurais cru que nous aurions eu des huitantequatraines ou des octantequatraines (chez Hergé) !

  2. Papou27 dit :

    Sixty-four is the square of 8, the cube of 4, and the sixth power of 2. It is the smallest number with exactly seven divisors. It is the lowest positive power of two that is adjacent to neither a Mersenne prime nor a Fermat prime. 64 is the sum of Euler’s totient function for the first fourteen integers. It is also a dodecagonal number and a centered triangular number.
    Source Wikipédia.
    C’est tout ce que j’ai trouvé (en anglo-normand cela fait peut être 800, mais pas en pur Normand !) Ah, tu nous la bailles belle !

  3. p0cy dit :

    When I’m sixty-four comme le disaient les beatles.

  4. p0cy dit :

    Et n’oublions les base sexagésimales qui nous servent encore pour compter les minutes et les secondes

  5. dedeff dit :

    J’avance petit à petit dans ce cours, mais
    Q: What did the Math PhD say to the MBA?
    ??

    Merci d’avance.

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s

Suivre

Recevez les nouvelles publications par mail.

Joignez-vous à 849 followers

%d bloggers like this: